MiniBooNE Steve Brice Fermilab - Oscillation Analysis - Issues of the Past Year - Normalization - Optical Model - π^0 MisIDs - Summary - Future #### MiniBooNE Goal - Search for v_e appearance in a v_μ beam at the ~0.3% level - L=540 m ~10x LSND - E~500 MeV ~10x LSND #### Particle ID - To achieve good sensitivity the Particle ID must - Eliminate ~99.9% of all v_{μ} CC interactions - Eliminate ~99% of all NC π^0 producing interactions - Maintain good (\sim 30-60%) efficiency for v_e interactions - It achieves these goals - · Exploring parallel, complementary approaches - "Simple" cuts: easy to understand - Boosted decision trees: maximize sensitivity # Backgrounds - Makeup of the backgrounds is different for the two particle ID approaches - Different balance between intrinsic v_e and misIDed v_μ - Important check that backgrounds are understood - · Backgrounds are determined from our own data using - v_{μ} CCQE events for intrinsic v_{e} from μ^{+} - Single π^0 events for π^0 misID - High energy v_e events for intrinsic v_e from K^+ Full data sample ~5.3 x 10²⁰ POT #### Osc ve - Example oscillation signal - $\Delta m^2 = 1 \text{ eV}^2$ - SIN²2 θ = 0.004 - Fit for excess as a function of reconstructed v_e energy Full data sample ~5.3 x 10²⁰ POT ## MisID ν_{μ} - · of these..... - ~83% π⁰ - Only ~1% of π^0 s are misIDed - Determined by clean π^0 measurement - \sim 7% $\Delta \gamma$ decay - Use clean π^0 measurement to estimate Δ production - ~10% other - Use v_{μ} CCQE rate to normalize and MC for shape Full data sample ~5.3 x 10²⁰ POT v_e from μ^+ $p+Be \longrightarrow \pi^+ \qquad v_\mu \qquad v_e$ $v_\mu = v_\mu \qquad v_\mu = v_\mu \qquad v_\mu = v_\mu \qquad v_\mu = v_\mu = v_\mu \qquad v_\mu = v_\mu$ - Measured with v_{μ} CCQE sample - Same parent π^+ kinematics - Most important background - Very highly constrained (a few percent) Full data sample ~5.3 x 10²⁰ POT #### v_e from K⁺ - Use High energy v_e and v_u to normalize - Use kaon production data for shape - Need to subtract off misIDs Full data sample ~5.3 x 10²⁰ POT #### Issues Of the Past Year - Most of the analysis effort over the last year has gone into - Normalization - Optical Model - π^0 MisIDs - Each is a significant hurdle that has been overcome #### Issues of the Past Year: Normalization - The MiniBooNE Run Plan reported we were seeing ~1.5 times as many events as the Monte Carlo predicted - For an inclusive v event sample - This normalization difference is now ~1.2 - Major changes in rate prediction since Run Plan (not complete list) ... ``` \begin{array}{ll} -3.5\% & \text{from better ν cross-section modeling} \\ +17.5\% & \text{from better modeling of incoming proton beam} \\ +5.2\% & \text{from $CCQE$ cross-section tuning $(M_A$ extraction)} \\ -6.0\% & \text{from better modeling of secondary beam interactions} \\ +16.2\% & \text{from $HARP$ π^+ measurement + horn current + better modeling of primary proton interactions} \\ \end{array} ``` After a huge amount of cross-checking the agreement between data and MC v rates is now far less of an issue # Issues of the Past Year: Optical Model - Two Key features of MiniBooNE - Trying to do very precise particle ID to identify a possible ~0.3% signal - Several calibration sources, but none with the perfect properties (e.g. no 1 GeV electron gun) - The approach must therefore be... - Use the available calibration sources (Michel electrons, laser, etc) - Have a very well tuned MC to extrapolate from what the calibration sources look like to what the signal and background look like - Therefore... - Need an "optical model" that matches data very well - Optical Model = model for how light is created, propagated, and detected in MiniBooNF # Issues of the Past Year: Optical Model Stepwise approach to tuning the optical model ## Issues of the Past Year: Optical Model - · Many variables are potentially useful in analyses - Optical Model improvement measured by data/MC agreement in these variables - Huge gains in data/MC agreement Chisq / NDF: 318 PID Inputs ## Issues of the Past Year: π^0 MisIDs - About 83% of all MisID background comes from single π^0 events - Use cleanly identified π^0 s to measure the π^0 rate as a function of π^0 momentum ## Issues of the Past Year: π^0 MisIDs New π^0 fitter can make π^0 yield measurements up to the ~1.5 GeV level needed to get at the v_e s from K⁺ This is an ongoing analysis – not yet complete π^0 Mass: Comparison Old Algorithm to New ## Summary - Over the past year the major hurdles have been crossed - Much more accurate prediction of rate data/MC ~1.2 - Optical Model probably now good enough (more checks needed) - Analysis for π^0 misID measurement largely in place - · Still a lot of work to do but the way forward is clear - On track for a result as soon as this summer #### The Future - · Ran in anti-neutrino mode January 2006 to shutdown - Will continue in anti-neutrino mode after shutdown - First ever anti-neutrino measurements in this energy region - SciBooNE experiment, at a near location in the beamline, will start in late 2006 (see SciBooNE talk) - Possibility to build additional detectors closer or farther away (BooNE) - MiniBooNE clone or new technology (e.g. LAr) - MiniBooNE result will guide location - ~2km detector for low ∆m² - \sim 0.2km detector for high Δ m² # Backups #### Neutrino Candidates - DAQ triggered on beam from Booster - v pulse through detector lasts 1.6 μs - By requiring tank activity and no veto activity the non-neutrino backgrounds become negligible # proton->Be collisions at 8.9 GeV/c piplus cross section with full statistical plus systematic errors shown (except the 4% normalization error) Momentum and angular distribution of pions decaying to a neutrino that passes through the MB detector. # Low Q2 & MiniBooNE QE Model - perform shape fit to MiniBooNE QE dN/dQ² (~60,000 QE events after cuts) - fit for: - Fermi Gas model pars (E_B,p_F) - axial mass, M_A - and background fraction, B_F - best shape fit yields "effective parameters": - M_A=1.24 GeV - $-E_B = 34 \text{ MeV}$ - $-p_F = 246 \text{ MeV}$ $-B_F = 0.7$ DOE Review 17 May 2006 (J. Monroe) #### Past v Data - not clear that past QE neutrino data necessarily rules out a larger value for M_A - example: BNL bubble chamber data and dσ/dQ² predictions with different M_A assumptions # Checking Particle ID with NuMI Events • Because of the off-axis angle, the beam at MiniBooNE from NuMI is significantly enhanced in $v_e s$ from K^+ · Enables a powerful check on the Particle ID DOE Review 17 May 2006